Special Populations To date, the vast majority of the data generated about the epidemiology, clinical course, prevention, and treatment of COVID-19 have come from studies of nonpregnant adults. More information is urgently needed for other populations, such as pediatric patients, pregnant patients, transplant patients, and other immunocompromised patients with COVID-19. Children with COVID-19 may have less severe disease overall when compared to adults, but the recently described multisystem inflammatory syndrome in children (MIS-C) requires further study. Data are also emerging on the clinical course of COVID-19 in pregnant patients, pregnancy outcomes in the setting of COVID-19, and vertical transmission of severe acute respiratory coronavirus 2, but further research is needed. There are special considerations for transplant recipients, cancer patients, and patients with other immunocompromising conditions (e.g., rheumatologic conditions, inflammatory bowel disease), as they may be at increased risk of serious complications and death as a result of COVID-19. The following sections review and synthesize the available data for some of these populations and discuss the specific considerations that clinicians should take into account when caring for these patients. # Special Considerations in Pregnancy and Post-Delivery Last Updated: May 12, 2020 There is current guidance from the Centers for Disease Control and Prevention (CDC), the American College of Obstetricians and Gynecologists (ACOG), and the Society for Maternal Fetal Medicine on the management of pregnant patients with COVID-19.¹⁻⁴ This section of the Treatment Guidelines complements that guidance and focuses on considerations regarding management of COVID-19 in pregnancy. Limited information is available regarding the effect of COVID-19 on obstetric or neonatal outcomes. Initial reports of COVID-19 disease acquired in the third trimester were largely reassuring, but most data are limited to case reports and case series.^{5,6} In one of the larger series from Wuhan, China, pregnant women did not appear to be at risk for more severe disease.⁷ Among 147 pregnant women with COVID-19 (64 confirmed cases, 82 suspected cases, and 1 case of asymptomatic infection), 8% had severe disease and 1% had critical disease. In comparison, in the general population of persons with COVID-19, 13.8% had severe disease and 6.1% had critical disease.⁸ While data are still emerging, the US experience has been similar to date.⁹ ACOG has developed algorithms to evaluate pregnant outpatients with suspected or confirmed COVID-19. As with non-pregnant patients, a wide range of clinical manifestations of the disease occur, from mild symptoms that can be managed with supportive care at home to severe disease and respiratory failure requiring intensive care unit admission. As with other patients, in the pregnant patient with symptoms compatible with COVID-19, the illness severity, underlying co-morbidities, and clinical status should all be assessed to determine whether in-person evaluation for potential hospitalization is needed. If hospitalization is indicated, ideally the care should be provided in a facility that has the capability to conduct close maternal and fetal monitoring. The principles of management of COVID-19 in the pregnant patient may include: - Fetal and uterine contraction monitoring - Individualized delivery planning - A team-based approach with multispecialty consultation. Other recommendations, as outlined for the non-pregnant patient, will also apply in pregnancy. # **Timing of Delivery:** - In most cases, the timing of delivery should be dictated by obstetric indications rather than maternal diagnosis of COVID-19. For women with suspected or confirmed COVID-19 early in pregnancy who recover, no alteration to the usual timing of delivery is indicated. - For women with suspected or confirmed COVID-19 in the third trimester, it is reasonable to attempt to postpone delivery (if no other medical indications arise) until a negative test result is obtained or quarantine restrictions are lifted in an attempt to avoid virus transmission to the neonate. - In general, a diagnosis of COVID-19 in pregnancy is not an indication for early delivery. 11 - Based on limited data on primarily cesarean deliveries, there appears to be no clear evidence of vertical transmission of SARS-CoV-2 via the transplacental route, but this has not been definitively ruled out.¹¹ # Management of COVID-19 in the Setting of Pregnancy: - There are no Food and Drug Administration-approved medications for the treatment of COVID-19. - Most clinical trials to date have excluded pregnant and lactating women. - Decisions regarding the use of drugs approved for other indications or investigational agents to treat COVID-19 must be made with shared decision-making, considering the safety of the medication and the risk and seriousness of maternal disease (see <u>Antiviral Therapy</u>, <u>Immune-Based Therapy</u> and <u>Considerations for Certain Concomitant Medications in Patients with COVID-19</u>). - Involvement of a multidisciplinary team in these discussions, including, among others, specialists in obstetrics, maternal-fetal medicine, and pediatrics, is recommended. - Enrollment of pregnant and lactating women in clinical trials (if eligible) is encouraged. ## **Post-Delivery:** - Currently the CDC recommends that the determination of whether or not to separate a mother with known or suspected COVID-19 and her infant should be made on a case-by-case basis using shared decision-making between the mother and the clinical team. - ACOG supports breastfeeding for infants. They recommend that, for women who are PUI or confirmed to have SARS-CoV-2 infection, the decision about whether and how to start or continue breastfeeding be made by the mother in coordination with her family and health care practitioners.¹¹ - CDC has developed interim guidance on breastfeeding, recommending that women who intend to breastfeed and who are temporarily separated from their infants express their breastmilk, ideally from a dedicated pump, practice good hand hygiene before and after pumping, and consider having a healthy person feed the infant. - CDC advises that women with COVID-19 who choose to room-in with their infants and feed them at the breast should practice good hand hygiene and wear a facemask to prevent transmission of the virus to the infant via respiratory droplets during breastfeeding.¹ SARS-CoV-2 has not been isolated from breast milk ⁵ #### References - 1. Centers for Disease Control and Prevention. Interim considerations for infection prevention and control of coronavirus disease 2019 (COVID-19) in inpatient obstetric healthcare settings. 2020. https://www.cdc.gov/coronavirus/2019-ncov/hcp/inpatient-obstetric-healthcare-guidance.html. Accessed April 2, 2020. - 2. The American College of Obstetricians and Gynecologists. Practice advisory: novel coronavirus 2019 (COVID-19). https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2020/03/novel-coronavirus-2019. - 3. Society for Maternal Fetal Medicine. Coronavirus (COVID-19) and pregnancy: what maternal fetal medicine subspecialists need to know. 2020. https://www.smfm.org/covid19. Accessed April 8, 2020. - 4. Rasmussen SA, Smulian JC, Lednicky JA, Wen TS, Jamieson DJ. Coronavirus disease 2019 (COVID-19) and pregnancy: what obstetricians need to know. *Am J Obstet Gynecol*. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32105680. - 5. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. *Lancet*. 2020;395(10226):809-815. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32151335. - 6. Liu Y, Chen H, Tang K, Guo Y. Clinical manifestations and outcome of SARS-CoV-2 infection during - pregnancy. J Infect. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32145216. - 7. Breslin N, Baptiste C, Miller R, et al. COVID-19 in pregnancy: early lessons. *American Journal of Obstetrics & Gynecology MFM*. 2020. [In Press]. Available at: https://www.sciencedirect.com/science/article/pii/S2589933320300410?via%3Dihub. - 8. World Health Organization. Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19). 2020; https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf. Accessed March 27, 2020. - 9. Breslin N, Baptiste C, Gyamfi-Bannerman C, et al. COVID-19 infection among asymptomatic and symptomatic pregnant women: Two weeks of confirmed presentations to an affiliated pair of New York City hospitals. *Am J Obstet Gynecol MFM*. 2020:100118. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32292903. - 10. The American College of Obstetricians and Gynecologists. Outpatient assessment and management for pregnant women with suspected or confirmed novel coronavirus (COVID-19). 2020; https://www.smfm.org/covid19/. Accessed April 2, 2020. - 11. The American College of Obstetricians and Gynecologists. COVID-19 frequently asked questions for obstetricians-gynecologists, obstetrics. 2020. https://www.acog.org/clinical-information/physician-faqs/covid-19-faqs-for-ob-gyns-obstetrics. Accessed April 2, 2020. # Special Considerations in Children Last Updated: June 11, 2020 Data on disease severity and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children are limited. Overall, several large epidemiologic studies suggest that acute disease manifestations are substantially less severe in children than in adults, although there are reports of children with COVID-19 requiring intensive care unit (ICU)-level care. Recently, SARS-CoV-2 has been associated with a potentially severe inflammatory syndrome in children (multisystem inflammatory syndrome in children [MIS-C], which is discussed below). Preliminary data from the Centers for Disease Control and Prevention (CDC) also show that hospitalization rates and ICU admission rates for children are lower than for adults. Severe cases of COVID-19 in children were associated with younger age and underlying conditions, although a significant number of the pediatric cases did not have complete data available at the time of the preliminary report. Without widespread testing, including for mild symptoms, the true incidence of severe disease in children is unclear. Data on perinatal vertical transmission to neonates are limited to small case series with conflicting results; some studies have demonstrated lack of transmission, whereas others have not been able to definitively rule out this possibility. Pecific guidance on the diagnosis and management of COVID-19 in neonates born to mothers with known or suspected SARS-CoV-2 infection is provided by the CDC. Insufficient data are available to clearly establish risk factors for severe COVID-19 disease in children. Based on adult data and extrapolation from other pediatric respiratory viruses, severely immunocompromised children and those with underlying cardiopulmonary disease may be at higher risk for severe disease. Children with risk factors recognized in adults, including obesity, diabetes, and hypertension, may also be at risk, although there are no published data supporting this association and insufficient data to guide therapy. Guidance endorsed by the Pediatric Infectious Diseases Society has recently been published, which provides additional specific risk categorization when considering therapy. As data emerge on risk factors for severe disease, it may be possible to provide more directed guidance for specific populations at high risk for COVID-19 and to tailor treatment recommendations accordingly. Currently, there are no Food and Drug Administration (FDA)-approved agents for the treatment of COVID-19. Based on preliminary clinical trial data, the investigational antiviral agent remdesivir is recommended for the treatment of COVID-19 in hospitalized patients with severe disease (see Remdesivir for detailed information). Of note, remdesivir has not been evaluated in clinical trials that include children with COVID-19. Remdesivir is available for children through an FDA Emergency Use Authorization or through a compassionate use program. For other agents outlined in these guidelines, there are insufficient data to recommend for or against the use of specific antivirals or immunomodulatory agents for the treatment of COVID-19 in pediatric patients. General considerations such as underlying conditions, disease severity, and potential for drug toxicity or drug interactions may inform management decisions on a case-by-case basis. Enrollment of children in clinical trials should be prioritized when trials are available. A number of additional drugs are being investigated for the treatment of COVID-19 in adults; clinicians can refer to the Antiviral Therapy and Immune Based Therapy sections of these guidelines to review special considerations for use of these drugs in children and refer to Table 2b and Table 3b for dosing recommendations in children. # Multisystem Inflammatory Syndrome in Children Emerging reports from Europe and the United States have suggested that COVID-19 may be associated with MIS-C (also referred to as pediatric multisystem inflammatory syndrome–temporally associated with SARS-CoV-2 [PMIS-TS]). The syndrome was first described in the United Kingdom, where previously healthy children with severe inflammation and Kawasaki disease-like features were identified to have current or recent infection with SARS-CoV-2. 16,17 Additional cases of MIS-C have been reported in other European countries, including Italy and France. 18,19 Emerging data suggest that MIS-C may be associated with pediatric patients who are slightly older than children typically seen with Kawasaki disease, and some cases of MIS-C in young adults have been reported. In the United States, from April 16 through May 4, 2020, the New York City Department of Health and Mental Hygiene received reports of 15 hospitalized children with clinical presentation consistent with MIS-C. Subsequently, the New York State Department of Health has been investigating several hundred cases and a few deaths in children with similar presentations, many of whom tested positive for SARS-CoV-2 infection by reverse transcriptase polymerase chain reaction (PCR) or serology.²⁰ Several other states are now reporting cases consistent with MIS-C. The current case definition for MIS-C can be found on the <u>CDC website</u>. This case definition, which may evolve as more data become available, includes: - Fever, laboratory evidence of inflammation, and evidence of clinically severe illness requiring hospitalization, with multiorgan involvement, *and* - No alternate diagnosis, and - Recent or current SARS-CoV-2 infection or exposure to COVID-19. From the available data, patients with MIS-C present with persistent fever, evidence of systemic inflammation, and a variety of signs and symptoms of multiorgan system involvement, including cardiac, gastrointestinal, renal, hematologic, dermatologic, and neurologic involvement. Some patients who meet criteria for MIS-C also meet criteria for complete or incomplete Kawasaki disease. An observational study compared data from Italian children with Kawasaki-like illness that was diagnosed before and after the onset of the SARS-CoV-2 epidemic. The data suggest that the SARS-CoV-2-associated cases occurred in children who were older than the children with Kawasaki-like illness diagnosed prior to the COVID-19 epidemic. In addition, the rates of cardiac involvement, associated shock, macrophage activation syndrome, and need for adjunctive steroid treatment were higher for the SARS-CoV-2-associated cases. Many patients with MIS-C have abnormal markers of cardiac injury or dysfunction, including troponin and brain natriuretic protein. Echocardiographic findings include impaired left ventricular function, as well as coronary artery dilations, and rarely, coronary artery aneurysms. At presentation, few patients are SARS-CoV-2 PCR positive (nasopharyngeal or nasal swab or stool sample), but most have detectable antibodies to SARS-CoV-2. Emerging observations suggest that there may be a wider range of severity of symptoms than initially recognized. Epidemiologic and clinical data suggest that MIS-C may represent a post-infectious inflammatory phenomenon rather than a direct viral process. The role of asymptomatic infection and the pattern of timing between SARS-CoV-2 infection and MIS-C are not well understood, and currently a causal relationship is not established. Currently, there is limited information available about risk factors, pathogenesis, clinical course, and treatment for MIS-C. Supportive care remains the mainstay of therapy. There are currently insufficient data for the COVID-19 Treatment Guidelines Panel to recommend either for or against any therapeutic strategy for the management of MIS-C. Although no definitive data are available, many centers consider the use of intravenous immune globulin, steroids, and other immunomodulators (including interleukin-1 and interleukin-6 inhibitors) for therapy, and antiplatelet and anticoagulant therapy. The role of antiviral medications that specifically target SARS-CoV-2 is not clear at this time. MIS-C management decisions should involve a multidisciplinary team of pediatric specialists in intensive care, infectious diseases, cardiology, hematology, and rheumatology. #### References - 1. Sun D, Li H, Lu XX, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center's observational study. *World J Pediatr*. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32193831. - 2. Cui Y, Tian M, Huang D, et al. A 55-day-old female infant infected with COVID 19: presenting with pneumonia, liver injury, and heart damage. *J Infect Dis.* 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32179908. - 3. Cai J, Xu J, Lin D, et al. A Case Series of children with 2019 novel coronavirus infection: clinical and epidemiological features. *Clin Infect Dis.* 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32112072. - 4. Kam KQ, Yung CF, Cui L, et al. A well infant with coronavirus disease 2019 (COVID-19) with high viral load. *Clin Infect Dis*. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32112082. - 5. Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2,143 pediatric patients with 2019 coronavirus disease in China. *Pediatrics*. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32179660. - 6. Centers for Disease Control and Prevention. Coronavirus Disease 2019 in Children—United States, February 12–April 2, 2020. 2020. Available at: https://www.cdc.gov/mmwr/volumes/69/wr/mm6914e4.htm. Accessed June 5, 2020. - 7. Cui X, Zhang T, Zheng J, et al. Children with coronavirus disease 2019 (covid-19): a review of demographic, clinical, laboratory and imaging features in 2,597 pediatric patients. *J Med Virol*. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32418216. - 8. Livingston E, Bucher K. Coronavirus Disease 2019 (COVID-19) in Italy. *JAMA*. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32181795. - 9. Tagarro A, Epalza C, Santos M, et al. Screening and severity of coronavirus disease 2019 (COVID-19) in children in Madrid, Spain. *JAMA* Pediatr. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32267485. - 10. DeBiasi RL, Song X, Delaney M, et al. Severe COVID-19 in children and young adults in the Washington, DC metropolitan region. *J Pediatr*. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32405091. - 11. Chao JY, Derespina KR, Herold BC, et al. Clinical characteristics and outcomes of hospitalized and critically ill children and adolescents with coronavirus disease 2019 (COVID-19) at a Tertiary Care Medical Center in New York City. J Pediatr. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32407719. - 12. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. *Lancet*. 2020;395(10226):809-815. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32151335. - 13. Fan C, Lei D, Fang C, et al. Perinatal transmission of COVID-19 associated SARS-CoV-2: should we worry? *Clin Infect Dis.* 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32182347. - 14. Zeng L, Xia S, Yuan W, et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID-19 in Wuhan, China. *JAMA Pediatr*. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32215598. - 15. Chiotos K, Hayes M, Kimberlin DW, et al. Multicenter initial guidance on use of antivirals for children with COVID-19/SARS-CoV-2. *J Pediatric Infect Dis Soc*. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32318706. - 16. Royal College of Paediatrics and Child Health. Guidance: Paediatric multisystem inflammatory syndrome temporally associated with COVID-19. 2020. Available at: https://www.rcpch.ac.uk/sites/default/files/2020-05/COVID-19-Paediatric-multisystem-%20inflammatory%20syndrome-20200501.pdf. Accessed May 28, 2020. - 17. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. *Lancet*. 2020;395(10237):1607-1608. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32386565. - 18. Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. *Lancet*. 2020. Available at: https://www.ncbi. ### nlm.nih.gov/pubmed/32410760. - 19. Toubiana J, Poirault C, Corsia A, et al. Outbreak of Kawasaki disease in children during COVID-19 pandemic: a prospective observational study in Paris, France. *medRxiv*. 2020:[Preprint]. Available at: https://www.medrxiv.org/content/10.1101/2020.05.10.20097394v1. - 20. New York State. Childhood inflamatory disease related to COVID-19. 2020; https://coronavirus.health.ny.gov/childhood-inflammatory-disease-related-covid-19. Accessed June 1, 2020. # Special Considerations in Solid Organ Transplant, Hematopoietic Stem Cell Transplant, and Cellular Therapy Candidates, Donors, and Recipients Last Updated: July 17, 2020 #### **Summary Recommendations** #### Potential Transplant and Cellular Therapy Candidates - The COVID-19 Treatment Guidelines Panel (the Panel) recommends diagnostic molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for all potential solid organ transplant (SOT), hematopoietic cell transplant (HCT), and cell therapy candidates with signs and symptoms that suggest acute COVID-19 infection (AIII). - The Panel recommends following the guidance from medical professional organizations that specialize in providing care for SOT, HCT, or cell therapy recipients when performing diagnostic molecular testing for SARS-CoV-2 in these patients (AIII). - If SARS-CoV-2 is detected or if infection is strongly suspected, transplantation should be deferred, if possible (BIII). #### **Potential Transplant Donors** - The Panel recommends assessing all potential SOT donors for signs and symptoms that are associated with COVID-19 according to guidance from medical professional organizations (AIII). - The Panel recommends performing diagnostic molecular testing for SARS-CoV-2 if symptoms are present (AIII). - If SARS-CoV-2 is detected or if infection is strongly suspected, donation should be deferred (BIII). - The Panel recommends assessing all potential HCT donors for signs and symptoms that are associated with COVID-19 according to guidance from medical professional organizations (AIII). - The Panel recommends performing diagnostic molecular testing for SARS-CoV-2 when symptoms are present (AIII). - If SARS-CoV-2 is detected or if infection is strongly suspected, donation should be deferred (BIII). ## Transplant and Cellular Therapy Recipients with COVID-19 - Clinicians should follow the guidelines for evaluating and managing COVID-19 in nontransplant patients when treating transplant and cellular therapy recipients (AIII). See Management of Persons with COVID-19, Potential Antiviral Drugs Under Evaluation for the Treatment of COVID-19, and Immune-Based Therapy Under Evaluation for Treatment of COVID-19 for more information. - The Panel recommends that clinicians who are treating COVID-19 in transplant and cellular therapy patients consult with a transplant specialist before adjusting immunosuppressive medications (AIII). - When treating COVID-19, clinicians should pay careful attention to potential drug-drug interactions and overlapping toxicities with immunosuppressants, prophylactic antimicrobials, and other medications (AIII). **Rating of Recommendations:** A = Strong: B = Moderate: C = Optional **Rating of Evidence:** I = One or more randomized trials with clinical outcomes and/or validated laboratory endpoints; II = One or more well-designed, nonrandomized trials or observational cohort studies; III = Expert opinion #### Introduction Treating COVID-19 in solid organ transplant (SOT), hematopoietic cell transplant (HCT), and cellular immunotherapy recipients can be challenging due to the presence of coexisting medical conditions, transplant-related cytopenias, and the need for chronic immunosuppressive therapy to prevent graft rejection and graft-versus-host disease. Transplant recipients may also potentially have increased exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) given their frequent contact with the health care system. Since immunosuppressive agents modulate several aspects of the host's immune response, the severity of COVID-19 could potentially be affected by the type and the intensity of the immunosuppressive effect of the agent, as well as by specific combinations of immunosuppressive agents. Some transplant recipients have medical comorbidities that have been associated with more severe cases of COVID-19 and a greater risk of mortality, which makes the attributable impact of transplantation on disease severity difficult to assess. The American Association for the Study of Liver Diseases (AASLD),¹ the International Society for Heart and Lung Transplantation, the American Society of Transplantation, the American Society for Blood and Marrow Transplantation and Cellular Therapy (ASTCT), the European Society for Blood and Marrow Transplantation (EBMT), and the Association of Organ Procurement Organizations provide guidance for clinicians who are caring for transplant recipients with COVID-19, as well as guidance for screening potential donors and transplant or cell therapy candidates. This section of the Guidelines complements these sources and focuses on considerations for managing COVID-19 in SOT, HCT, and cellular therapy recipients. The optimal management and therapeutic approach to COVID-19 in these populations is unknown. At this time, the procedures for evaluating and managing COVID-19 in transplant recipients are the same as for nontransplant patients (AIII). See Management of Persons with COVID-19, Potential Antiviral Drugs Under Evaluation for the Treatment of COVID-19, and Immune-Based Therapy Under Evaluation for Treatment of COVID-19 for more information. The medications that are used to treat COVID-19 may present different risks and benefits to transplant patients and nontransplant patients. # Assessment of SARS-CoV-2 Infection in Transplant and Cellular Therapy Candidates and Donors The risk of transmission of SARS-CoV-2 from donors to candidates is unknown. The probability of donor or candidate infection with SARS-CoV-2 may be estimated by considering epidemiologic risk, obtaining clinical history, and testing with molecular techniques. No current testing strategy is sensitive enough or specific enough to totally exclude active infection. Living solid organ donors should be counseled on strategies to prevent infection and monitored for exposures and symptoms in the 14 days prior to scheduled transplant.² HCT donors should practice good hygiene and avoid crowded places and large group gatherings during the 28 days prior to donation.³ ## Assessment of Transplant and Cellular Therapy Candidates Diagnostic molecular testing for SARS-CoV-2 is recommended for all potential SOT candidates with signs and symptoms that suggest acute COVID-19 infection (AIII). All potential SOT candidates should be assessed for exposure to COVID-19 and clinical symptoms that are compatible with COVID-19 before they are called in for transplantation and should undergo diagnostic molecular testing for SARS-CoV-2 shortly before SOT in accordance with guidance from medical professional organizations (AIII). Clinicians should consider performing diagnostic testing for SARS-CoV-2 in all HCT and cellular therapy candidates who exhibit symptoms. All candidates should also undergo diagnostic molecular testing for SARS-CoV-2 shortly before HCT or cell therapy (AIII). # Assessment of Donors The COVID-19 Treatment Guidelines Panel (the Panel) recommends following the guidance from medical professional organizations and assessing all potential HCT donors for exposure to COVID-19 and clinical symptoms that are compatible with COVID-19 before donation (AIII). Deceased donors should undergo screening for known symptoms and exposure to others with COVID-19 before transplantation, and decisions about using such organs should be made on a case-by-case basis (BIII). Recommendations for screening are outlined in the ASTCT and EBMT guidelines. # If SARS-CoV-2 Infection Is Detected or Strongly Suspected If SARS-CoV-2 is detected or if infection is strongly suspected in a potential SOT donor or candidate, transplant should be deferred, if possible (BIII). The optimal disease-free interval before transplantation is not known. The risks of viral transmission should be balanced against the risks to the candidate, such as progression of the underlying disease and risk of mortality if the candidate does not receive the transplant. This decision should be continually reassessed as conditions evolve. For HCT and cellular therapy candidates, current guidelines recommend deferring transplants or immunotherapy procedures, including peripheral blood stem cell mobilization, bone marrow harvest, T cell collection, and conditioning/lymphodepletion in recipients who test positive for SARS-CoV-2 or who have clinical symptoms that are consistent with infection. Final decisions should be made on a case-by-case basis while weighing the risks of delaying or altering therapy for the underlying disease. ## **Transplant Recipients with COVID-19** SOT recipients who are receiving immunosuppressive therapy should be considered to be at increased risk for severe COVID-19.^{1,4} A national survey of 88 U.S. transplant centers conducted between March 24 and 31, 2020, reported that 148 SOT recipients received a diagnosis of COVID-19 infection (69.6% were kidney recipients, 15.5% were liver recipients, 8.8% were heart recipients, and 6.1% were lung recipients). COVID-19 was mild in 54% of recipients and moderate in 21% of recipients, and 25% of recipients were critically ill. Modification of immunosuppressive therapy during COVID-19 and the use of investigational therapies for treatment of COVID-19 varied widely among recipients. Initial reports of transplant recipients who were hospitalized with COVID-19 suggest mortality rates of up to 28%.⁶⁻⁹ #### Risk of Graft Rejection There have been no published reports of graft rejection in SOT recipients who received a diagnosis of COVID-19, although this may be due to a limited ability to perform biopsies. Acute cellular rejection should not be presumed in SOT recipients without biopsy confirmation in individuals with or without COVID-19. Similarly, immunosuppressive therapy should be initiated in recipients with or without COVID-19 who have rejection confirmed by a biopsy.¹ There is a lack of data on the incidence and clinical characteristics of SARS-CoV-2 infection in HCT and cellular therapy recipients. Experience with other respiratory viruses suggests that this population is at a high risk for severe disease, including increased rates of lower respiratory tract infection and mortality. Factors that may determine clinical severity include degree of cytopenia, time since transplant, intensity of the conditioning regimen, graft source, degree of mismatch, and the need for further immunosuppression to manage graft-versus-host disease. For other respiratory viruses, HCT recipients often exhibit prolonged viral shedding, 11-14 which can have implications for infection prevention and for the timing of potential interventions. # Treatment of COVID-19 in Transplant Recipients Currently, no drug has been approved by the Food and Drug Administration (FDA) for the treatment of COVID-19, although preliminary data suggest that the investigational antiviral drug remdesivir can be used in those with severe disease. Remdesivir is available for use in these patients under the FDA's Emergency Use Authorization.¹⁵ Preliminary data from a large randomized controlled trial have shown that a short course of dexamethasone (6 mg once daily for up to 10 days) can improve survival in patients with COVID-19 who are mechanically ventilated or who require supplemental oxygen. ¹⁶ At this time, the risks and benefits of using dexamethasone in transplant recipients with COVID-19 who are receiving immunosuppressive therapy, which may include corticosteroids, are unknown. The Panel's recommendations for the use of remdesivir and dexamethasone in patients with COVID-19 can be found in the Remdesivir and Corticosteroids sections. A number of other investigational agents and drugs that are approved by the FDA for other indications are being evaluated for the treatment of COVID-19 (e.g., antiviral therapies, COVID-19 convalescent plasma) and its associated complications (e.g., immunomodulators, antithrombotic agents). In general, the considerations when treating COVID-19 are the same for transplant recipients as for the general population. When possible, treatment should be given as part of a clinical trial. The safety and efficacy of investigational agents and drugs that have been approved by the FDA for other indications are not well defined in transplant recipients. Moreover, it is unknown whether concomitant use of immunosuppressive agents to prevent allograft rejection in the setting of COVID-19 affects treatment outcome. The use of antiviral or immune-based therapies for the treatment of COVID-19 can present additional challenges in transplant patients. Clinicians should pay special attention to the potential for drug-drug interactions and overlapping toxicities with concomitant medications, such as immunosuppressants that are used to prevent allograft rejection (e.g., corticosteroids, mycophenolate, and calcineurin inhibitors such as tacrolimus and cyclosporine), antimicrobials that are used to prevent opportunistic infections, and other medications. Dose modifications may be necessary for drugs that are used to treat COVID-19 in transplant recipients with pre-existing organ dysfunction. Adjustments to the immunosuppressive regimen should be individualized based on disease severity, the specific immunosuppressants used, the type of transplant, the time since transplantation, the drug concentration, and the risk of graft rejection. Clinicians who are treating COVID-19 in transplant patients should consult with a transplant specialist before adjusting immunosuppressive medication (AIII). Certain investigational or off-label therapeutics (e.g., remdesivir, tocilizumab) are associated with elevated levels of transaminases. For liver transplant recipients, the AASLD does not view abnormal liver biochemistries as a contraindication to using investigational or off-label therapeutics, although certain elevation thresholds may exclude patients from trials of some investigational agents.¹⁷ Close monitoring of liver biochemistries is warranted in patients with COVID-19, especially when they are receiving agents with a known risk of hepatotoxicity. Calcineurin inhibitors, which are commonly used to prevent allograft rejection, have a narrow therapeutic index. Medications that inhibit or induce cytochrome P450 enzymes or P-glycoprotein may put patients who receive calcineurin inhibitors at risk of clinically significant drug-drug interactions, increasing the need for therapeutic drug monitoring and the need to assess for signs of toxicity or rejection. Similarly, transplant patients may be at a higher risk of adverse effects, particularly when their concomitant medications have overlapping toxicities. Specific concerns about the use of potential antiviral medications and immune-based therapy for COVID-19 in transplant patients are noted below. See Tables 2b and 3b for additional details. # Table 4. Special Concerns for Drugs That Are Being Evaluated for COVID-19 Treatment in Transplant Patients Last Updated: July 17, 2020 | Drugs That Are Being Evaluated for COVID-19 Treatment | Concerns in Transplant Patients | |-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Azithromycin | Hepatotoxicity (cholestatic hepatitis, rare) | | | Additive effect with other drugs that prolong the QTc interval. | | Chloroquine and Hydroxychloroquine | Moderate inhibition of CYP2D6. | | | • Inhibition of P-gp may increase levels of calcineurin inhibitors and mTOR inhibitors. | | | Additive effect with other drugs that prolong the QTc interval. | | Dexamethasone | Moderate CYP3A4 inducer | | | Potential for additional immunosuppression and increased risk of Ols. | | HIV Protease Inhibitors | • RTV and other PIs are strong inhibitors of CYP3A4. Coadministration will increase concentrations of tacrolimus, cyclosporine, everolimus, sirolimus, and prednisone. | | | • TDM and dose adjustment of immunosuppressant is necessary. Monitor for calcineurin inhibitor-associated toxicities. | | Interleukin-6 Inhibitors | • Use of IL-6 inhibitors may lead to increased metabolism of drugs that are CYP substrates. Effects on CYP may persist for weeks after therapy. | | | • AEs include neutropenia and an increase in transaminases. See <u>Table 3b</u> . | | Remdesivir | Strong P-gp inducers (e.g., rifampin) may reduce RDV exposure. Coadministration is not recommended. | | | • Increase in levels of serum transaminases. | | | Accumulation of drug vehicle cyclodextrin in patients with kidney dysfunction. | | Ribavirin | • Significant toxicities, including anemia, bradycardia, and an increase in serum transaminases levels. | **Key:** AE = adverse effects; CYP = cytochrome P450; IL = interleukin; mTOR = mechanistic target of rapamycin; OI = opportunistic infection; P-gp = P-glycoprotein; PI = protease inhibitor; RDV = remdesivir; RTV= ritonavir; TDM = therapeutic drug monitoring #### References - 1. Fix OK, Hameed B, Fontana RJ, et al. Clinical best practice advice for hepatology and liver transplant providers during the COVID-19 pandemic: AASLD Expert Panel consensus statement. *Hepatology*. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32298473. - 2. American Society of Transplantation. COVID-19 resources for transplant community. 2020. Available at: https://www.covid19treatmentguidelines.nih.gov/contact-us/. Accessed June 26, 2020. - 3. American Society for Transplantation and Cellular Therapy. ASTCT interim patient guidelines April 20, 2020. 2020. Available at: https://www.astct.org/viewdocument/astct-interim-patient-guidelines-ap?CommunityKey=d3949d84-3440-45f4-8142-90ea05adb0e5&tab=librarydocuments. Accessed July 2, 2020. - 4. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): groups at higher risk for severe illness. 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/groups-at-higher-risk.html. Accessed June 1, 2020. - 5. Boyarsky BJ, Po-Yu Chiang T, Werbel WA, et al. Early impact of COVID-19 on transplant center practices and policies in the United States. *Am J Transplant*. 2020;20(7):1809-1818. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32282982. - 6. Akalin E, Azzi Y, Bartash R, et al. COVID-19 and kidney transplantation. *N Engl J Med*. 2020;382(25):2475-2477. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32329975. - 7. Pereira MR, Mohan S, Cohen DJ, et al. COVID-19 in solid organ transplant recipients: Initial report from the US epicenter. *Am J Transplant*. 2020;20(7):1800-1808. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32330343. - 8. Alberici F, Delbarba E, Manenti C, et al. A single center observational study of the clinical characteristics and short-term outcome of 20 kidney transplant patients admitted for SARS-CoV2 pneumonia. *Kidney Int.* 2020;97(6):1083-1088. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32354634. - 9. Montagud-Marrahi E, Cofan F, Torregrosa JV, et al. Preliminary data on outcomes of SARS-CoV-2 infection in a Spanish single center cohort of kidney recipients. *Am J Transplant*. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32368838. - 10. Ison MG, Hirsch HH. Community-acquired respiratory viruses in transplant patients: diversity,impact, unmet clinical needs. *Clin Microbiol Rev.* 2019;32(4). Available at: https://www.ncbi.nlm.nih.gov/pubmed/31511250. - 11. Ogimi C, Xie H, Leisenring WM, et al. Initial high viral load is associated with prolonged shedding of human rhinovirus in allogeneic hematopoietic cell transplant recipients. *Biol Blood Marrow Transplant*. 2018;24(10):2160-2163. Available at: https://www.ncbi.nlm.nih.gov/pubmed/30009982. - 12. Ogimi C, Greninger AL, Waghmare AA, et al. Prolonged shedding of human coronavirus in hematopoietic cell transplant recipients: risk factors and viral genome evolution. *J Infect Dis.* 2017;216(2):203-209. Available at: https://www.ncbi.nlm.nih.gov/pubmed/28838146. - 13. Milano F, Campbell AP, Guthrie KA, et al. Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients. *Blood*. 2010;115(10):2088-2094. Available at: https://www.ncbi.nlm.nih.gov/pubmed/20042728. - 14. Choi SM, Boudreault AA, Xie H, Englund JA, Corey L, Boeckh M. Differences in clinical outcomes after 2009 influenza A/H1N1 and seasonal influenza among hematopoietic cell transplant recipients. *Blood*. 2011;117(19):5050-5056. Available at: https://www.ncbi.nlm.nih.gov/pubmed/21372154. - 15. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID-19—preliminary report. *N Engl J Med*. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32445440. - 16. Horby P, Shen Lim W, Emberson J, et al. Effect of dexamethasone in hospitalized patients with COVID-19: preliminary report. *medRxiv*. 2020;Preprint. Available at: https://www.medrxiv.org/content/10.1101/2020.06.22.20137273v1. - 17. American Association for the Study of Liver Diseases. Clinical insights for hepatology and liver transplant providers during the COVID-19 pandemic. 2020. Available at: https://www.aasld.org/sites/default/files/2020-04/AASLD-COVID19-ClinicalInsights-4.07.2020-Final.pdf. Accessed: June 26, 2020. - 18. Elens L, Langman LJ, Hesselink DA, et al. Pharmacologic treatment of transplant recipients infected with SARS-CoV-2: considerations regarding therapeutic drug monitoring and drug-drug interactions. *Ther Drug Monit.* 2020;42(3):360-368. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32304488.